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Abstract
We propose an extended Finnis–Sinclair (FS) potential by extending the
repulsive term into a sextic polynomial for enhancing the repulsive interaction
and adding a quartic term to describe the electronic density function. It turns
out that for bcc metals the proposed potential not only overcomes the ‘soft’
behaviour of the original FS potential, but also performs better than the modified
FS one by Ackland et al, and that for fcc metals the proposed potential is able
to reproduce the lattice constants, cohesive energies, elastic constant, vacancy
formation energies, equations of state, pressure–volume relationships, melting
points and melting heats. Moreover, for some fcc–bcc systems, e.g. the Ag–
refractory metal systems, the lattice constants, cohesive energies and elastic
constants of some alloys are reproduced by the proposed potential and are quite
compatible with those directly determined by ab initio calculations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the 1980s, a variety of empirical n-body potentials have been introduced and employed
to study the bulk, surface and cluster properties of metals [1–4]. Although the introduced
potentials, such as the tight-binding approach based on the second moment approximation [5],
the so-called embedded atom method (EAM) [6] and the Finnis–Sinclair (FS) potential [7],
have different forms in their details, they have similar formulations, which represent the total
potential energy of a system as a sum of a pairwise interaction term and an n-body one. Among
these potentials, the scheme developed by Finnis and Sinclair based on a second-moment
approximation to the tight-binding density of states has a simply analytic form and has been
shown to give very good results in simulations of point defects, grain boundaries, surfaces and
amorphization transitions for metals and alloys [8–12]. Nonetheless, in the applications of
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FS potential, researchers have found some shortcomings of the potential. One is that the FS
potential is systematically too ‘soft’, as it moves away from the equilibrium volume [13, 14].
To overcome such a shortcoming, Ackland and Thetford have proposed to add a ‘core’ into the
repulsive term in FS formalism to enhance the short-range atomic interactions, thus improving
the pressure–volume relationships for some bcc metals, i.e. V, Nb, Ta, Mo and W [14]. A
similar modification has also been proposed by Rebonato et al [13]. It is noted, however, that
the modified potential is too stiff compared with the universal equation of state, i.e. the Rose
equation [15], when the distance is less than the equilibrium one. Another shortcoming is that
the FS potential has some difficulty in satisfactorily reproducing the static physical properties
for some fcc metals, especial for noble metals. In this regard, Ackland et al have pointed out
that the problem might be attributed to the electronic structure difference between the bcc and
fcc metals and proposed another formalism for noble metals and nickel under the framework
of FS potential [16]. Nonetheless, the proposed formalism is more complex than the original
FS formalism, as one of the potential parameters is determined by fitting the pressure–volume
relationship, which is rather difficult to obtain experimentally when the pressure is very high.

We propose, in the present study, an extended FS potential, which also has a simply
analytic form and can be widely used to calculate many properties of bcc and fcc metals and
alloys. We will introduce the proposed extended FS potential through the following four steps.
First, the detailed formalism of extended FS potential is introduced. Second, we will show how
extended FS potential overcomes the first shortcoming of FS potential through reproducing the
equation of state for some bcc metals, and how extended FS potential performs better than the
previously modified FS potential by Ackland et al. Third, extended FS potential is applied in
reproducing some properties of six selected fcc metals, i.e. Cu, Ag, Au, Ni, Pd and Pt, such as
the lattice constants, cohesive energies, elastic constants, equations of state, pressure–volume
relationships, melting points and melting heats. Fourth, the extended FS potential is applied
to four fcc–bcc systems, i.e. the Ag–refractory metal systems, to calculate lattice constants,
cohesive energies and elastic constants of the respective alloys in the systems.

2. The model of extended FS potential

According to EAM or FS formalism, the total energy of a system is given by

Utot = 1
2

∑

i j

V (ri j ) −
∑

i

f (ρi ). (1)

The first term in equation (1) is the conventional central pair-potential summation, which is
expressed by a quartic polynomial in original FS formalism [7] and by an exponential form in
Johnson’s EAM potential [17]. In the present study, we propose to use a sextic polynomial for
improving the repulsive interaction between the atoms and the extended term is expressed by

V (r) =
{

(r − c)2(c0 + c1r + c2r 2 + c3r 3 + c4r 4), r � c

0, r > c
(2)

where c is a cut-off parameter assumed to lie between the second and third neighbour atoms.
c0, c1, c2, c3 and c4 are the potential parameters to be fitted. The second term in equation (1)
is the n-body term. Based on a second-moment approximation to the tight-binding density of
states, the embedding function f can be expressed by

f (ρi ) = √
ρi , (3)
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where, according to the linear superposition approximation, the host electronic density ρi can
be written as the sum of the electronic density functions φ(ri j ) of the individual atoms i , i.e.

ρi =
∑

j �=i

A2φ(ri j). (4)

In the original FS potential, the electronic density function is a quadratic term. In the present
study, we propose to add a quartic term in the electronic density function to improve the
description of the electronic structure of metals. The electronic density function is expressed
by

φ(r) =
{

(r − d)2 + B2(r − d)4, r � d

0, r > d .
(5)

Note that the term B2(r − d)4 is added in equation (5) to improve the performance of the
potential in describing the electronic density of metals, especially of fcc metals. In equation (5),
the cut-off parameter d is also assumed to lie between the second and third neighbour atoms.
Apparently, the proposed extended FS potential is still a simple short-range potential, and when
the potential parameters, c3, c4 and B , are all set to be zero, the extended FS potential turns into
the original FS formalism. Consequently, the extended FS potential could work for whatever
original the FS formalism could do for bcc metals and is expected to work well for fcc metals
as well as for some bcc–fcc systems.

3. Application for bcc metals

Since it has been demonstrated that the FS potential is a reliable and effective scheme for
treating many issues of pure bcc metals, the extended FS potential should also work well in
the same aspects. In table 1, we list some basic physical properties reproduced from extended
FS potentials for six selected bcc metals, i.e. Fe, V, Mo, Nb, Ta and W, and for comparison
the corresponding experimental values are also listed. From the table, one sees clearly that
the reproduced lattice constants, cohesive energies, elastic constants and vacancy formation
energies of the selected metals are in good agreement with their respective experimental values,
showing the excellent performance of extended FS potential for bcc metals. In the following
sub-sections, we will use the extended FS potential to calculate some other physical properties
of bcc metals so as to further validate the performance of the extended FS potential for bcc
metals.

3.1. Structural stability and equation of state

In the fitting procedure, we do not consider whether the bcc crystal structure is more stable
than an fcc or hcp one. However, it is known that the global stability is very important to
test the reliability of a potential. Based on the newly constructed extended FS potentials, the
cohesive energies and lattice constants have been calculated for the six selected bcc metals and
the results are listed in table 2. From table 2, one can clearly see that the cohesive energy of each
bcc structure is greater than that of its corresponding fcc or hcp structure, reflecting well the
fact that the equilibrium states of the six metals are bcc structures. Interestingly, the cohesive
energies for fcc and hcp structures are exactly the same for all the six metals in table 2. In fact,
when the cut-off parameter of a potential lies between the second and third neighbour atoms,
the potential is not able to distinguish the difference between an fcc structure and an ideal hcp
structure, leading to the same calculated cohesive energy for both structures listed in table 2. To
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Table 1. The comparison between the properties reproduced by the extended FS potential and the
experimental values for pure Fe, V, Mo, Nb, Ta and W.

Fe V Mo Nb Ta W

a (Å)
Reproduced 2.870 3.030 3.1472 3.300 3.300 3.160
Experimentala,b 2.87 3.03 3.1472 3.30 3.30 3.16

Ec (eV)
Reproduced 4.273 5.339 6.818 7.572 8.084 8.916
Experimentala,b 4.28 5.31 6.82 7.57 8.10 8.90

C11 (Mbar)
Reproduced 2.263 2.240 4.631 2.470 2.308 5.308
Experimentala,b 2.26 2.29 4.637 2.47 2.663 5.32

C12 (Mbar)
Reproduced 1.406 1.175 1.589 1.347 1.435 2.058
Experimentala,b 1.40 1.21 1.578 1.35 1.582 2.049

C44 (Mbar)
Reproduced 1.155 0.448 1.087 0.287 0.913 1.626
Experimentala,b 1.16 0.444 1.092 0.287 0.874 1.631

E f
v (eV)

Reproduced 1.861 2.123 2.555 2.746 2.905 3.707
Experimental 1.79c 2.20d 3.10e 2.75e 2.18f 3.95g

Potential parameters

A (eV Å
−1

) 0.931 312 1.922 282 1.848 648 2.999 182 2.702 029 1.885 948
d (Å) 4.05 3.69 4.1472 3.90 4.15 4.41
c (Å) 2.96 3.70 3.2572 4.07 3.77 3.25

c0 (eV Å
−2

) 26.270 34 23.691 18 47.980 66 25.575 48 30.911 55 48.527 96

c1 (eV Å
−3

) −24.401 09 −25.758 98 −34.099 24 −26.842 73 −26.579 02 −33.796 21

c2 (eV Å
−4

) 6.957 871 9.393 983 5.832 293 9.903 115 6.651 629 5.854 334

c3 (eV Å
−5

) −0.303 077 −1.028 748 0.017 494 −1.297 269 0.007 0699 −0.009 8221

c4 (eV Å
−6

) −0.085 092 −0.039 966 0.020 393 0.014 2888 −0.128 597 0.033 338

B (Å
−2

) 0 0 0 0 0 0

a Reference [18]; b Reference [19]; c Reference [20]; d Reference [21]; e Reference [22]; f Reference [23];
g Reference [24].

Table 2. The calculated cohesive energies (the unit is in eV) of pure Fe, V, Mo, Nb, Ta and W in
three simple crystalline structures (bcc, fcc and ideal hcp).

bcc fcc hcp

a Ec a Ec a Ec

Fe 2.870 4.2734 3.600 4.2706 2.546 4.2706
V 3.030 5.3393 3.871 5.1067 2.737 5.1067
Mo 3.1472 6.8176 3.8482 6.5667 2.7212 6.5667
Nb 3.300 7.5723 4.219 7.2472 2.983 7.2472
Ta 3.300 8.0601 4.194 7.8788 2.965 7.8788
W 3.160 8.9164 3.898 8.7630 2.756 8.7630

distinguish the energy difference between the two structures, a longer cut-off parameter, e.g. at
least greater than the distance of the third neighbour atom, should be adopted.

As mentioned above, the FS potential has an apparent shortcoming when treating the
pressure–volume relationship of some bcc metals, i.e. the potential is too ‘soft’ when it moves
away from the equilibrium volume. In order to validate extended FS potential in this aspect,
we calculate the equations of state of the six bcc metals based on the potentials and plot them
in figure 1. For comparison, the equations of state derived from the Rose equation, FS potential
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Figure 1. Equations of state derived from extended FS potentials (solid line), Rose equation
(dotted line), FS potentials (dashed line) and Ackland’s improved FS potentials (dash–dot–dot line),
respectively, for (a) Fe, (b) V, (c) Mo, (d) Nb, (e) Ta and (f) W.

and Ackland’s modified FS potential, respectively, are also plotted in figure 1. It is known that
the Rose equation, which is deduced from many experimental pressure–volume data and shows
a good agreement with the experimental data, can be regarded as the universal equation of state
for most of the metals [15]. From figure 1, one sees that compared with the Rose equation, the
FS potential really shows a too ‘soft’ behaviour when it treats the cases of Fe, V, Nb and Ta. In
fact, Finnis and Sinclair recognized such a shortcoming when they published their formalism
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Figure 1. (Continued.)

in 1984, and in order to improve the pressure–volume relationship of Cr and Fe they added a
term in the electronic density function, which is expressed by [7]

φ(r) =
{

(r − d)2 + B(r − d)3/d, r � d

0, r > d .
(6)

The added term indeed improves the pressure–volume relationship of Cr; however, as shown in
figure 1(a), the potential of Fe is still too ‘soft’ when the lattice constant has a small value. Three
years later, Ackland et al proposed to add a ‘core’ to the repulsive term in the FS formalism to
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Figure 2. The pressure versus volume relationships for six bcc metals, i.e. Fe, V, Mo, Nb, Ta and
W. The solid curves are from extended FS potentials, the dashed curves are from the Rose equation,
and the scattered dots are from experiments. The experimental data of Ta are from [25], and those
of Mo and W are from [26].

enhance the short-range atomic interactions, thus improving the pressure–volume relationships
for some bcc metals, i.e. V, Nb, Ta, Mo and W [14]. The ‘core’ is an exponential term and is
expressed by

g(r) = β(b0 − r)3 exp(−αr). (7)

From figure 1, one sees that Ackland’s modified FS potential has indeed overcome the ‘soft’
character of the original FS potential when the lattice constant is less than the equilibrium one,
yet is too stiff when compared with the Rose equation. Inspecting the equations of state derived
from the extended FS potential for six selected bcc metals, i.e. Fe, V, Mo, Nb, Ta and W, in
figure 1, one sees that the extended FS potential not only overcomes the ‘soft’ shortcoming of
the original FS formalism, but also shows good agreement with those derived from the Rose
equation. In other words, the treatment to the repulsive term proposed in the present study is
quite reasonable and the extended FS potential does perform better than Ackland’s modified
one.

3.2. Pressure–volume relationship

During simulation, such as MD simulation, the volume of a simulation model frequently
changes with the imposed pressure. The pressure–volume relationship is therefore very
important for a potential while applying to perform simulations. Accordingly, we calculate
the relationships of the pressure versus volume for the six selected bcc metals based on
extended FS potentials and compared the results with those obtained from the Rose equation
and experiments, respectively, in figure 2. One sees from figure 2 that for Fe, Mo, Ta and
W the calculated results between extended FS potentials and the Rose equation are in good
agreement even at a very small volume, and that for V and Nb the calculated results from
extended FS potentials are a little smaller than those from the Rose equation at small volume.
More importantly, the calculated results of Mo, Ta and W are in good agreement with the
experimental values.
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Table 3. The melting points and melting heats for six selected bcc metals. The experimental data
are from [19].

Fe V Mo Nb Ta W

Melting point MD 2100 2500 3300 3000 3450 4500
(K) Expt 1811 2202 2895 2750 3293 3695

Melting heat MD 17.25 19.72 30.69 23.69 25.22 29.71
(kJ mol−1) Expt 13.80 20.90 32.00 26.40 31.60 35.40

3.3. Melting point and melting heat

Reasonably predicting the basic thermodynamics properties of metals is another important
point for a relevant n-body potential; we therefore validate the proposed extended FS potential
by calculating the melting points of the six selected bcc metals. Based on extended FS
potentials, molecular dynamics simulations are carried out with solid solution models to
determine the melting points of the metals [27]. The knowledge from phase transition theory
indicates that at the melting point the heat of formation has an apparent change, which
corresponds to the melting heat. Accordingly, during the MD simulations, the heat of formation
of the solid solution model is monitored with variation of temperature to determine the melting
points of metals. The melting points and the melting heats determined by MD simulations
as well as their corresponding experimental values for the six selected bcc metals are all
listed in table 3. One sees from the table that the calculated melting points are in reasonable
agreement with the experimental values with a maximum error of 21.78%. For the melting
heats, the calculated values are considered to be compatible with the experimental values with
a maximum error of about 25.00%. In short, the proposed extended FS potential is therefore
quite reasonable to describe the thermodynamic behaviour of bcc metals.

4. Application for fcc metals

The proposed extended FS potential can also be used to treat the cases of fcc metals. Table 4
lists the potential parameters for six selected fcc metals, i.e. Cu, Ag, Au, Ni, Pd and Pt, some
properties of these metals reproduced from the extended FS potential, and their corresponding
properties observed in experiments. One sees from the table that the reproduced values for Cu,
Ag and Pt are in excellent agreement with the experimentally observed ones, with the largest
root-square deviation (X rmx) being less than 0.011%, and that the reproduced values for Au, Pd
and Ni are also considered to match reasonably well with the experimental ones, with the largest
X rmx being around 5.82%. In fact, in reproducing the static properties of fcc metals, extended
FS potentials work even better than the EAM potentials derived by both Foiles and Cai [31, 32],
as in their cases the largest X rmx was reported to be around 6.65% and the minimum X rmx never
went to zero. In the following sub-sections, we will further show the application of the extended
FS potential to calculate some other properties of these fcc metals, such as the equation of state,
pressure–volume relationship, melting point and melting heat.

4.1. Equation of state

Figure 3 displays the equations of state for the six fcc metals, i.e. Cu, Ag, Au, Ni, Pd and Pt,
calculated from their extended FS potentials and the Rose equation, respectively. One sees from
the figure that the results derived from extended FS potentials are in good agreement with those
deduced from the Rose equation. The agreement is best for Cu, Ag, Au and Ni, and good for
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Table 4. The comparison between the properties reproduced by the extended FS potential and the
experimental values for pure Cu, Ag, Au, Ni, Pd and Pt.

Cu Ag Au Ni Pd Pt

a (Å)
Reproduced 3.610 4.090 4.080 3.520 3.890 3.920
Experimentala 3.61 4.09 4.08 3.52 3.89 3.92

Ec (eV)
Reproduced 3.490 2.950 3.885 4.437 3.949 5.834
Experimentala 3.49 2.95 3.81 4.44 3.89 5.84

C11 (Mbar)
Reproduced 1.684 1.240 1.923 2.450 2.271 3.470
Experimentala,b 1.684 1.24 1.923 2.45 2.271 3.47

C12 (Mbar)
Reproduced 1.214 0.937 1.348 1.485 1.473 2.526
Experimentala,b 1.214 0.937 1.631 1.40 1.761 2.51

C44 (Mbar)
Reproduced 0.754 0.461 0.438 1.182 0.764 0.764
Experimentala,b 0.754 0.461 0.42 1.25 0.717 0.765

E f
v (eV)

Reproduced 1.280 1.100 0.774 1.624 1.169 1.512
Experimental 1.28c 1.1c 0.9c 1.60d 1.4d 1.5c

Xrms (%) 0 0 4.99 0.69 5.82 0.011

Potential parameters

A (eV Å
−1

) 0.391 865 0.325 514 0.013 7025 0.982 477 0.049 9173 0.150 23
d (Å) 4.32 4.41 4.46 4.12 4.50 4.12
c (Å) 4.29 4.76 4.16 4.22 3.98 4.61

c0 (eV Å
−2

) 10.187 24 10.681 2 44.968 58 13.282 76 23.600 65 31.501 62

c1 (eV Å
−3

) −12.820 33 −12.045 17 −55.128 26 −17.085 06 −28.240 54 −37.906 21

c2 (eV Å
−4

) 6.176 587 5.203 072 25.846 57 8.262 515 13.116 04 17.481 37

c3 (eV Å
−5

) −1.341 391 −1.013 304 −5.445 922 −1.770 48 −2.785 318 −3.627 633

c4 (eV Å
−6

) 0.109 842 0.074 2308 0.432 66 0.141 39 0.227 087 0.282 552

B (Å
−2

) −0.881 096 −1.293 394 −53.963 0 0 10.684 04 9.3107

a Reference [18]. b Reference [28]. c Reference [29]. d Reference [30].

Pt and Pd. It should be noted that though we have not fitted the Rose equation as in the fitting
procedure in the EAM scheme [17], the equations of state calculated by extended FS potentials
for both bcc and fcc metals are all in agreement with those from the Rose equation. In other
words, the proposed extended FS potential is excellent at describing the relationship between
the total energy and lattice constant, even when the distance is far from an equilibrium state.

During MD simulation, the interatomic force deduced from the derivative of the total
energy is a very important physical variable, which directly affects the simulation result. In
general, for a curve of force versus distance, continuousness, no sharp fluctuations, and no odd
points are all the basic features to insure obtaining the correct result. In figure 3, the derivative
of total energy calculated from extended FS potentials for Cu, Ag, Au, Ni, Pd and Pt metals
together with those deduced from the Rose equation are shown. From the figure, one sees that
for all the studied metals the derivatives of total energy derived from the extended FS potential
vary continuously and smoothly with the lattice constants, and that the calculated results are in
good agreement with those derived from the Rose equation, implying the extended FS potential
can reasonably describe the interaction in fcc metals.

4.2. Pressure–volume relationship

We also calculate the relationships of pressure versus volume for the six selected fcc metals
based on their extended FS potentials and compare the results with those derived from the Rose
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Figure 3. Equations of state and derivatives of energy for six fcc metals, i.e. (a) Cu, (b) Ag, (c) Au,
(d) Ni, (e) Pd and (f) Pt. Solid lines and dotted lines are the total energies derived from extended
FS potentials and the Rose equation, respectively. Dashed lines and dash–dot–dot lines are their
derivatives with respect to the lattice constant, respectively.

equation in figure 4. One sees from the figure that for Cu, Ag, Ni and Pd the calculated results
between the extended FS potential and the Rose equation are in good agreement even at a very
small volume, and that for Au and Pt the calculated results from the extended FS potential are
a little smaller than those from the Rose equation at small volume. In figure 5, the calculated
results of Cu, Ag, Au, Pt and Pd have been compared with their respective experimental values.
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Figure 3. (Continued.)

It is clear that the agreement between the calculated results and experimental values is good.
The above results suggest that the proposed extended FS potential could also overcome the
‘soft’ behaviour for fcc metals, as it moves away from the equilibrium state. It is therefore
deduced that the proposed extended FS potential can be used in atomistic simulation for fcc
metals, even if some volume–pressure change may emerge.

4.3. Melting point and melting heat

Using the same method as mentioned in section 3.3, the melting points and the melting heats
of the six selected fcc metals are also monitored based on their extended FS potentials. The
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Figure 4. The pressure versus volume relationships for six fcc metals, i.e. Cu, Ag, Au, Ni, Pd and
Pt. The solid curves are from extended FS potentials, and the dashed curves are from the Rose
equation.
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Figure 5. The pressure versus volume relationships for six fcc metals, i.e. Cu, Ag, Au, Ni, Pd and
Pt. The solid curves are from extended FS potentials, and the scattered dots are from experiments.
(Cu, Ag and Pd are from [33], Au is from [34], and Pt is from [35].)

simulated values together with their corresponding experimental values are all listed in table 5.
One sees from the table that the calculated melting points of Cu, Ag, Ni and Pd are in good
agreement with the experimental values, as the maximum error for Cu, Ag, Ni and Pd is less



Extended Finnis–Sinclair potential for bcc and fcc metals and alloys 4539

Table 5. The melting points and melting heats for six selected fcc metals. The experimental data
are from [19].

Cu Ag Au Ni Pd Pt

Melting point MD 1300 1175 1475 1800 1875 2225
(K) Expt 1358 1235 1337 1728 1828 2042

Melting heat MD 9.16 8.95 13.14 13.74 16.60 16.37
(kJ mol−1) Expt 13.05 11.30 12.55 17.47 17.60 19.60

than 5%, and that the maximum errors in the calculated melting points for Pt and Au are 8.8
and 10.3%, respectively. For melting heats, the calculated values are reasonably compatible
with the experimental values, with a maximum error of about 31.6%. Apparently, the extended
FS potential can also reasonably reflect the thermodynamic properties of fcc metals.

5. Application for fcc–bcc systems

In the present section, we will show that the extended FS potential can also be successfully
applied to some fcc–bcc systems. We present here the results obtained from the four
equilibrium immiscible Ag–refractory metal systems, i.e. Ag–Mo, Ag–Nb, Ag–Ta and Ag–
W systems, characterized by relatively large positive heats of formation, being +56,+25,+23
and +65 kJ mol−1, respectively [36].

5.1. Construction of the cross potentials

For fcc–bcc cross potentials, the forms expressed by equations (1)–(5) are also adopted. It is
known that for equilibrium immiscible systems it is a challenging task to fit the cross potentials,
as there are no available experimental data related to the respective alloy compounds. In this
respect, the first-principles calculation based on quantum mechanics is known to be a reliable
way to acquire some physical properties of some possible intermetallic compounds [37–39]. In
the present study, the first-principles calculations are carried out using the well established
Vienna ab initio simulation package (VASP) [40, 41]. In the calculation, the plane-wave
basis and fully nonlocal Vanderbilt-type ultrasoft pseudo-potentials are employed [42]. The
exchange and correlation items are described by the generalized-gradient approximation (GGA)
proposed by Perdew and Wang [43]. The integration in the Brillouin zone is done in a mesh of
11 × 11 × 11 special k points determined according to the so-called Monkhorst–Pack scheme,
as such integration is proved to be sufficient for the computation of the simple structures [44].
Through ab initio calculations, the lattice constants and cohesive energies of some hypothetic
Ag–Mo(Nb, Ta, W) alloys are obtained and then applied in fitting the Ag–Mo(Nb, Ta, W) cross
potentials. The parameters of the fitted Ag–Mo(Nb, Ta, W) cross potentials are listed in table 6.
Based on the constructed extended FS potentials, the lattice constants and cohesive energies
of some hypothetical compounds in the four Ag–refractory metal systems are calculated and
the results are listed in table 7. For comparison, the results deduced directly from ab initio
calculations are also listed in the table. From table 7, one sees clearly that the reproduced values
are in good agreement with those from ab initio calculations, suggesting that extended FS
potential is reasonable to describe the atomic interactions in the Ag–refractory metal systems.
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Table 6. Fitted parameters for Ag–Mo(Nb, Ta, W) cross potentials.

Ag–Mo Ag–Nb Ag–Ta Ag–W

A (eV Å
−1

) 0.5452 0.3963 0.8331 0.6962
d (Å) 4.30 4.20 4.36 4.60
c (Å) 4.40 4.50 4.50 4.30

c0 (eV Å
−2

) 29.0724 46.2206 37.9635 25.6180

c1 (eV Å
−3

) −29.2625 −45.5157 −37.9588 −26.3407

c2 (eV Å
−4

) 9.8921 15.0141 12.7381 9.1414

c3 (eV Å
−5

) −1.1251 −1.6656 −1.4352 −1.0693

c4 (eV Å
−6

) 0 0 0 0

B (Å
−2

) 0 0 0 0

Table 7. The lattice constants and cohesive energies of some Ag–Mo, Ag–Ta, Ag–Nb and Ag–W
alloys.

a Ec a Ec

Compounds (Å) (eV) Compounds (Å) (eV)

Ag3Mo L12
This work 4.13 3.1166

Ag3Nb L12
This work 4.20 3.5350

VASP 4.13 3.1166 VASP 4.20 3.5352

AgMo B2
This work 3.23 3.9161

AgNb B2
This work 3.32 4.7237

VASP 3.23 3.9161 VASP 3.32 4.7233

AgMo3 L12
This work 3.99 5.2072

AgNb3 L12
This work 4.18 6.3226

VASP 3.99 5.4438 VASP 4.17 6.1628

Ag3Ta L12
This work 4.18 3.5970

Ag3W L12
This work 4.13 3.4291

VASP 4.18 3.5962 VASP 4.13 3.4542

AgTa B2
This work 3.30 4.9048

AgW B2
This work 3.22 4.7990

VASP 3.30 4.9060 VASP 3.22 4.7212

AgTa3 L12
This work 4.17 6.5297

AgW3 L12
This work 4.01 6.7903

VASP 4.17 6.5288 VASP 4.01 6.8686

5.2. Elastic constants of alloys

For the four Ag–refractory metal systems, we reproduce the elastic constants of some possible
alloys at a few specific compositions, based on the newly constructed extended FS potentials
of the systems. For comparison, the well known ab initio program CASTEP [45] is also
employed to acquire the elastic constants. In CASTEP calculations, the nonlocal ultrasoft
pseudo-potentials have also been used, together with a kinetic energy cut-off of 330 eV and the
PW91 GGA exchange–correlation functional. A 15 × 15 × 15 special k-point sampling mesh
of the Brillouin zone is found to produce converged results for all cubic structures, while for
the D019 structure the mesh is set to 9 ×9 ×9. In table 8, the elastic constants calculated by the
extended FS potential and from CASTEP, respectively, are listed. From the table, one sees that
the signs of the results derived by the extended FS potential and CASTEP, respectively, are quite
consistent with each other, though some of the values have some discrepancy. From the data
listed in the table, one could also see some unusual features in the elastic behaviour. First, the
elastic constants C ′ = (C11 − C12)/2 of the B2 AgTa, L12Ag3W, L12Ag3Mo, and B2 AgNb
alloys are negative, implying that these structures are dynamically unstable under an elastic
shearing. Second, in all the other cases, the C44 and C ′ are all positive, suggesting that these
structures may elastically be stable. The qualitative agreement between the reproduced values
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Table 8. The elastic constants (the unit is GPa) of the Ag–Mo(Nb, Ta, W) alloys.

Compounds a (Å) c (Å) C11 C12 C13 C33 C44 C ′

Ag3Ta D019
CASTEP 2.94 4.62 168.75 135.33 87.00 260.38 42.87 16.71
This work 2.96 4.82 119.07 59.25 49.91 133.48 20.38 29.91

AgTa3 D03
CASTEP 6.50 240.85 180.36 97.59 30.24
This work 6.73 124.77 123.30 67.93 0.73

AgTa B2
CASTEP 3.25 152.34 191.55 84.89 −19.60
This work 3.30 167.12 180.33 133.04 −6.60

Ag3W L12
CASTEP 4.16 95.50 125.20 22.59 −14.84
This work 4.13 15.35 66.83 33.73 −25.74

AgW3 D019
CASTEP 2.99 4.60 133.21 95.13 100.70 320.54 57.32 19.03
This work 2.80 4.56 242.85 105.81 73.91 266.98 36.12 68.52

AgW3 L12
CASTEP 4.08 261.57 202.90 138.10 29.33
This work 3.96 139.74 138.93 101.97 0.40

Ag3Mo L12
CASTEP 4.11 120.11 124.08 38.99 −1.98
This work 4.13 3.37 76.05 45.63 −36.33

Ag3Mo D03
CASTEP 6.48 135.43 133.69 88.67 0.868
This work 6.84 54.28 48.54 19.05 2.87

AgMo3 D019
CASTEP 2.86 4.55 236.63 139.68 126.05 357.39 69.22 48.47
This work 2.82 4.59 174.94 82.03 51.03 200.29 14.35 46.45

Ag3Nb L12
CASTEP 4.16 119.05 114.08 41.12 2.48
This work 4.20 132.00 92.42 63.47 19.78

Ag3Nb D019
CASTEP 2.97 4.63 149.21 133.09 81.31 238.31 41.23 8.05
This work 2.97 4.84 176.52 78.18 65.03 195.83 35.02 49.16

AgNb B2
CASTEP 3.30 115.94 165.79 69.58 −24.92
This work 3.32 185.75 280.80 204.64 −47.52

and those from CASTEP calculations suggests that the extended FS potential can reasonably
describe the elastic behaviour in the equilibrium immiscible Ag–refractory metal systems.

6. Concluding remarks

Through enhancing the repulsive interaction, the proposed extended FS potential performs well
in reflecting the pressure–volume relationship for bcc metals and is capable of reproducing
some basic physical properties of fcc metals, thus overcoming the shortcoming of the original
FS formalism.

The proposed extended FS potential is also good at deriving the equations of state for
some bcc and fcc metals, which are in good agreement with the Rose equation, indicating the
extended FS potential can reasonably describe the energy and force even when the distance is
far from the equilibrium state.

The proposed extended FS potential is also able to correctly reproduce the lattice constants,
cohesive energies and elastic constants of some possible compounds in the Ag–refractory
metal systems, indicating that the potential is capable of describing the interactions in fcc–bcc
systems.
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